翻訳と辞書 |
Type inhabitation : ウィキペディア英語版 | Type inhabitation In type theory, a branch of mathematical logic, in a given typed calculus, the type inhabitation problem for this calculus is the following problem: given a type and a typing environment , does there exist a -term M such that ? With an empty type environment, such an M is said to be an inhabitant of . == Relationship to logic ==
In the case of simply typed lambda calculus, a type has an inhabitant if and only if its corresponding proposition is a tautology of minimal implicative logic. Similarly, a System F type has an inhabitant if and only if its corresponding proposition is a tautology of second-order logic.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Type inhabitation」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|